翻訳と辞書 |
secant variety : ウィキペディア英語版 | secant variety In algebraic geometry, the Zariski closure of the union of the secant lines to a projective variety is the first secant variety to . It is usually denoted . The secant variety is the Zariski closure of the union of the linear spaces spanned by collections of k+1 points on . It is usually denoted . Unless , it is always singular along , but may have other singular points. If has dimension d, the dimension of is at most kd+d+k. ==References==
* Joe Harris, ''Algebraic Geometry, A First Course'', (1992) Springer-Verlag, New York. ISBN 0-387-97716-3
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「secant variety」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|